Indexes… the “Key” to Database Design

By Alan Zenreich

Introduction

Several years ago, in an effort to develop wizards to help new database users, Microsoft gathered many tables from wide range of users. One (horrifying) realization was that the overwhelming majority of the tables collected did not have a primary key. From a database perspective this is very troubling… but what if a database was not your introduction in data storage? Much of the data had been simply imported from spreadsheets, where consistency of data… and speed of data retrieval is not paramount.

Subsequent to this analysis, the Microsoft Access Table Analyzer was born. At least it gives new users some advice by looking at the structures and data in their tables and makes some reasonable suggestions.

The reason I bring this up is that I still get to see table design that is far from optimum. Granted, there is a lot of personal style in the way database schema is developed, and it ultimately should be task oriented… get the job at hand (and future jobs) done.

This discussion focuses on the use of indexes in database schemas (a description of database in terms of its data definition language).

I will be both philosophical and practical… perhaps giving you some things to think about for existing and future projects.

I’ll also cover suggestions for applying these schema techniques in Microsoft Access applications.

What is an index?

Indexes (or indices) help databases locate and sort records. Database systems use indexes in much the same way that readers use indexes in a book. When you want to find information in a book, it would be rather impractical to always start with page number one and go page by page until you find the data you are looking for. Instead the book authors spend time considering the kinds of information that the reader will look for and make one or more indexes at the back of the book so that the reader can find the subject and a pointer to the page number(s) where the information is found.

Indexes on tables use much the same technique… it makes pointers to values in the data. Indexes can be created based on a single field or on multiple fields. Multiple-field indexes enable you to distinguish between records in which the first field may have the same value.

You may also make multiple indexes per table. This would be analogous to having a travel guidebook with separate indexes for hotels and for restaurants. The nature of the questions you are asking of the data will usually guide you to using one or more indexes.

Why index?

Relational demands

Although Microsoft Access is not a true relational database (as of my knowledge, no retail product is), it does follow many if not most of the relational dictates. One of the requirements of a table in a relational system is that it is an “R-Table” (relational tables) and one of the properties of an R-Table is that each row can be uniquely identified by the data in one or more columns. Therefore every table in a relational database must have a primary key… essentially a record identifier. Placing an index on a primary key is one way of assuring uniqueness, and increasing performance.

Uniqueness

By its very nature, a primary key is a unique value or set of values in a record. However, there may be situations where you need uniqueness in fields that are not primary keys.

For example, let’s say that you have an employee table that is keyed on an Employee ID field, and you have another field for the employee’s initials (to be used as a shorthand identifier in correspondence.). It is important that no two employees use exactly the same initials. Creating a unique index on the Initials field would prohibit duplicates in the field.

The technique of using unique secondary indexes to assure uniqueness in the data is an important part of using system generated primary keys, and will be discussed later.

Performance

Aside from the theoretical reasons for using indexes to help maintain the integrity of the data… the major goal is performance. Microsoft Access and SQL Server use indexes to speed up queries and almost all kinds of data access.

Performance, performance

Indexed searches are generally better performers than table scans.

When searching for a single value or range of values, indexes are great. However, making an index on a field with very few values does not make much sense. For example, indexing an employee table on a single gender field where values can be only Male or Female will not provide any benefit.

There may be times when using an index (or using the wrong index) can slow down data retrieval. For example, if the table is very small, it will most likely be kept in memory or in a cache anyway, so a secondary index really might not provide any benefit. On the other hand, if the database management system, looking at the table’s values and statistics, decides that a table scan on a large table is most efficient approach… and you explicitly force an index read (using the INDEX= query optimizer hint in SQL Server) you can dramatically slow down data retrieval.

Nothing is free

Indexes do have their cost. It takes time to create an index, but this is not a major factor once the table has been created and indexed. However, if the table has many updates, either edits to existing records, or adding new records, the index(es) need to be updated immediately.

The overhead of maintaining indexes can be considerable, but SQL Server 7.0 has changed the method used whereby the index now points to key of the record, rather than the page location of record. This way, if the data is moved, but the key remains the same, the indexes don’t need to be modified… a very significant design change for the better.

When loading a table with data, you’ll have to experiment if it is faster to create the indexes before or after inserting data into the table. In some SQL Server stored procedures, it can be faster to create an unindexed temporary table, load it with data, then index before querying it.

Keys…

A key is a column or group of columns that either identifies a row… a Primary Key (PK), or defines a relationship between two tables… a Foreign Key (FK)

Primary Keys

A Primary key is the field or collection of fields that uniquely identifies a record and defines the entity integrity for the record, assuring there are no duplicate records.

Foreign Key

A Foreign Key is a field whose values are the key field value(s) of another table. By specifying a foreign key relationship between the field and another table, invalid data cannot be added to the table.

Secondary Indexes

Various secondary indexes may be created for performance tuning and data validation reasons. For example, although a table may be keyed on EmployeeID, you might want a unique index on Social Security number to prevent typographical error duplicates.

Choosing the primary key

Practical database design is a compromise between the ideals of the relational model balanced against real world data and tools available.

One might think that something as apparently simple as what to use as a table’s primary key would not require much thought… however it is often the subject of much heated debate by developers.

There are advantages and costs to the various approaches, and I’ll outline them here.

Surrogate vs. Natural keys

When looking at the structure of a table, one or more columns may be “key candidates”, meaning that they will be able to uniquely identify a record. The data falls into two categories… natural and surrogate values.

Natural keys exist in the data

Natural keys depend on data in the table to make the record identifiable. Sometimes the uniqueness seems obvious… using an EmployeeID for example.

However, take an example of a two field State table where one field is the StateCode abbreviation, and the other is the StateName field. Each column has unique values, so why is one field better than the other as a key? Using the StateCode will probably be a better key because using it as a foreign key in other tables will require less storage, and the data entry personnel will more easily enter a mnemonic code.

Single versus multi-field keys

There are cases where a single field of natural values does not contain enough information to insure uniqueness, and cannot be used as a primary key. For example EmployeeID and Date might key an Expense table.

Multi-field primary keys can be useful, but they make it more difficult to maintain integrity between two tables.

Later you’ll see how this can get complicated when data needs to be updated.

Surrogate keys

An alternative to using natural data is to have the database create primary key values… creating a Surrogate Key (SK).

Surrogate keys are system generated

When a database designer provides a value for a primary key, that is independent of the data entered by users, we will consider it a surrogate key.

SK is an “Invariant Record Identifier”

Basically an SK is a single value, unique to a record, but also has the property of being invariant… meaning it never changes. You’ll soon see why this is so attractive.

Usually an auto-number or identity field

Usually, SK values are populated using auto-number fields in JET tables, or Identity fields in SQL Server tables. In either case, the user never modifies the field once entered. (There is a way of toggling SQL Server’s identity property for a column using the IDENTITY INSERT statement, so you can move data from one table to another and still maintain the correct values)

A database designer could also design a table that holds “next number” values and go get the next value from that table when necessary.

Data types

Auto-numbers and Identity fields are typically long integers, so referencing foreign keys should be long integers. Could also be a GUID.

Inferences

Usually SK data values have no particular importance to the system, either explicit or inferred. That is, values could just as easily be unique random numbers (JET tables allow Random auto-numbers).

However some designers may infer information from SKs if the values increment monotonically for each record… there is an implied order of data entry because keys are not reused. This might be useful in some simple cases, but if you need to depend on data entry order, there are more reliable ways to document it.

Why use SKs?

So surrogate keys are simply numbers, usually integers. What’s so good about them? Joining tables based on integer values is very efficiently handled by query processors. This can speed performance significantly over text based keys. It also simplifies the database schema and takes all the pain out of cascading updates (because the keys never change)

OK, so if nothing is free, what are the costs associated with using SKs

There are a few things that you need to get used to when using tables with surrogate keys, and the foreign keys that depend on them.

Numbers, numbers, numbers

Thee data stored in the field will be integers… not the easiest thing for a human to read, but fortunately, humans don’t have to read the raw data. The data can be presented with joins or combo boxes to show more descriptive information shown in the related tables.

So, seeing a field with an SK for an employee is not as intuitive in a datasheet view as an Employee ID, or some mneumonic code.

Application uniqueness

Because using an SK as a primary key guarantees uniqueness of the key itself, there needs to be other restraints that guarantee uniqueness of data that must not be duplicated.

For example, if an Employee table has an SK field as its primary key, it might also need a unique secondary index on EmployeeID so that the same employee is not entered into the table more than once.

This technique of pairing secondary indexes (sometimes multi-field) with an integer SK is the heart of the index strategy using surrogate keys.

Data entry

It is rare that the SK field is surfaced to the user, because it has no inherent meaning for the user. Therefore data entry generally provides combo boxes or list boxes that show mneumonic data, and behind the scenes the SK is stored in the field for them. There is some overhead with loading combo boxes with data, but it also has some benefits, such as being able to surface Not-In-List events, that let users catch errors and possibly add new foreign keys.

So what’s the big deal about using Surrogate keys?

If you’ve always designed tables using natural keys, you’ve already run into some of the issues that I’ll outline here… surrogate keys virtually eliminate the problems that natural keys bring with them.

Things don’t change until they do

One of the things to look for when selecting a primary key using natural data is data that will not change after being entered. For example, a list of states is unlikely to have the StateCode change. I say unlikely, because one day you might want to include foreign countries in your table of states/provinces and there may actually be a conflict in codes. So pretty much all natural key data is subject to revision, and with it, the necessity to cascade those changes down to dependent tables which use the changed data as a foreign key.

Social security numbers, employee numbers

You might think that social security numbers and EmployeeID numbers might be good natural keys. However, it is not unusual for a number to be typed in incorrectly, and corrected weeks, sometimes months later. This causes massive updates to dependant tables, perhaps timesheets, expense data, etc simply because the original data-entry person transposed some data.

Stock ticker symbols

I’ve seen many financial systems that use stock ticker symbols as primary and foreign key fields. This is a great example of what appears to be static information, yet is actually commonly changed when a company changes its name. If a surrogate key is used, then the ticker symbol is just like any other piece of data in the record… and references to the record are done using the SK field that hasn’t changed. Therefore no cascading updates are necessary.

Multi-field natural keys

This presents a real problem for updating and cascading changes.

For example, let’s assume that a customer table is keyed on LastName and FirstName, and that each record in an Invoice table has both fields as part of its data. Lets say your customer Mary Smith gets married and wants to use her new last name (she married John Jones) instead of her own. She is now Mary Jones, but you already have a customer Mary Jones. You can imagine the grief that can occur if only one of the fields gets changed, or if Mary wants to be replaced by her husband’s name altogether. Of course, there might also be existing customers Mary Jones and John Smith. You can imagine the confusion if invoices get posted to the wrong customer.

When using an SK in the customer table, any or all of the non SK data can be changed without regard for the dependant records. The customer hasn’t changed, only the name of the customer has changed. This alone is a significant comfort to database designers.

Schema design

OK, so how do I implement surrogate keys in my systems? It’s simple really, and once you understand a couple of basic conventions, even the most complex schema becomes pretty straightforward and almost self documenting.

Each table has an SK field as the primary key

· Almost every table has a single key field named simply “SK”

The reason for not prefacing the field with the table name (i.e., EmployeeSK) is that it doesn’t add any particular value for a primary key. For example, in a multi table query, a syntax fragment would look like:

SELECT Employee.SK, Employee.LastName, Department.SK, Department.Code FROM Employee INNER JOIN Department ON Employee.DepartmentSK = Department.SK

so the simple SK is sufficient because the table is either explicitly specified in the syntax, or implicitly specified if there is a single table in the query.

· This field is an integer, (auto-number in Jet tables, identity field in SQL Server)

· Exceptions for multi-field primary keys are for cross reference tables, where the key might be two SKs that are FKs to other tables. Even then it is arguable that cross reference tables could benefit from having their own SK.

Foreign keys are table name & SK

When used as a foreign key in a table a field is named for the foreign table and suffixed with SK, For example: in an Invoice table, each invoice has its own SK value. Each record also has an CustomerSK that refers to the SK field in the customer table and an EmployeeSK field refers to the employee who made the sale.

What if several fields need to be foreign keys to the same table? For example, an Department record might have to store the SKs of the manager and the supervisor and other employees. To differentiate multiple foreign keys use Table name & SK & Type. So in this example the Department table has its own SK field, and fields named EmployeeSKManager and EmployeeSKSupervisor

Mneumonic keys are used for data entry

Easily remembered unique values are given unique indexes. These are the values that are typically surfaced to users, not the SK fields. Usually combo boxes are presented for data entry.

Use secondary indexes to assure entity integrity

Using unique secondary indexes is crucial to prevent duplicates in the data. For example, the EmployeeID column in the Employee table should not allow duplicate entries.

Create “cover” indexes for important queries

Indexes that cover queries can sometimes dramatically improve performance. Covered queries are those where all the columns specified in the query are contained within the same index. For example, a query retrieving columns a and b from a table that has a multi-field index created on columns a, b, and c is considered covered.

When a covering index is used performance is improved because all the data for the query is contained within the index itself, so only the index pages, not the data pages, of the table must be referenced to retrieve the data. This reduces the amount of disk activity necessary for the query processing.

Keep in mind however, that adding columns to indexes can improve performance, maintaining the extra columns in the index incurs update and storage costs.

Jet indexes

Jet tables (those stored in .MDB, .MDA and .MDE files) are the native data format for MS Access. Access used the Jet engine to communicate with data stored in the files.

Managing from within MS Access

Indexes are created and maintained in table design by selecting View/Indexes.

In this window you name your indexes, and specify the fields they are to include along with the sort order (ascending or descending). You also specify if the index is a primary key, if it is have unique values, and if it is to ignore null values.

[image: image1.png]
Figure 1: Managing indexes from within MS Access.

This screen is from the NorthWind sample database. It shows the current indexes on the Order Details table. I show this particular sample because it raises a few issues.

It shows using a multi-field index, in this case the primary key. It also shows a secondary index on ProductID. This is reasonable because the primary key has OrderID as the first field, and if a query were only interested in ProductID, the primary key would not assist in the search.

However it also shows a secondary index on OrderID, which in this case is pretty much useless. With OrderID being the first field of the primary key, the secondary index adds no particular information or value. The index was probably not explicitly created by the database designer, but was created by linking tables together in the relationship window.

Referential integrity and indexes

When you use the relationship window to declare referential integrity rules, MS Access automatically creates indexes on the foreign key fields. This most likely accounts for the OrderID index shown above.

Limitations

MS Access allows up to 32 indexes per table (including those created implicitly with relationships), and up to 10 fields per index. In database schemas where many tables use the same table for foreign keys, the 32 index limit can be a problem that needs some clever workarounds. However, in larger schemas, it might be better to move to a platform that has no such restrictions, such as MS SQL Server.

Microsoft SQL Server indexes

If your Microsoft Access database is used as a front end to MS SQL Server data, you have all the functionality of the server tools at your disposal. Indexes can be created and modified using (among other tools) the SQL Server Enterprise manager, Visual Interdev, and if using MS Access 2000 with an .ADP project. The interfaces presented by the different tools vary slightly, use whatever tool is most comfortable for you.

[image: image2.png]
Figure 2: Managing an index with Visual Interdev or from within an MS Access .ADP project.

[image: image3.png]
Figure 3: Index management in MS SQL Server Enterprise Manager

Indexes can also be created and managed with various SQL Server Transact SQL statements as well as SQL DMO code.

SQL Server specific index features

There are several additional features provided by MS SQL Server that let you refine your indexes.

Clustered vs. non-clustered

Clustered indexes can dramatically improve performance.

When you create a clustered index in SQL Server 7.0, the data in the table is stored in the data pages of the database according to the order of the values in the indexed columns.

Therefore, there can obviously be only one clustered index per table (it does not have to be the primary key), so consider the fields contained in a clustered index wisely.

During query processing, when scanning the index, there is no need to then jump to the data pages, as it is already there.

It is best to use integer keys for clustered indexes. Also, clustered indexes benefit from being created on unique, non-null, or IDENTITY columns.

To make table updates as quick as possible, SQL Server 7.0 uses the following techniques:

· If a table has a clustered index (and thus a clustering key), the leaf nodes of all nonclustered indexes use the clustering key as the row locator rather than the physical row location identifier.

· If a table does not have a clustered index, nonclustered indexes continue to use the physical row location identifiers to point to the data pages.

· When a leaf node of a clustered index is split, the nonclustered indexes do not need to be updated because the row locators are still valid.

Fill factor

SQL Server lets you specify how much extra space is in each page of an index when it is created. This is useful when you know that many records are going to be added to the table, and want to leave room for the data so that the index pages don’t have to be split during data entry time. However, this also means that the index is initially larger, and consequently, there is more disk reading necessary.

For most applications, using the default Fill Factor of 0 is probably best.

You can specify a percent of the page to fill… for example, a Fill Factor of 10 means leave 90% of the page empty. The default Fill Factor should be 0, which means fill each page to the maximum, but it leaves a bit of space at the top of the index tree. A Fill Factor of 100 fills each page and leaves no room (good for tables that won’t change once the table is indexed).

SQL Server indexing notes

· Only the owner of the table can create indexes on the same table.

· Only one clustered index can be created per table.

· The maximum number of nonclustered indexes that can be created per table is 249 (including any indexes created by PRIMARY KEY or UNIQUE constraints).

· The maximum length of all the columns that comprise the index is 900 bytes. For example, a single index could not be created on three columns defined as char(300), char(300), and char (301) because the total width exceeds 900 bytes.

· The maximum number of columns that can comprise the same index is 16.

Index tuning tools

There are several tools provided by SQL Server to help you tune your indexes.

· The Perform Index Analysis feature of the Query Analyzer is new to SQL Server 7. You specify a query and select this feature from the menu, and suggestions for tuning the index, if any, will be presented to you.

· An extraordinarily useful tool is using the Query Analyzer’s ability to display a query’s execution plan. SQL Server 7 surfaces this as a graphical display that shows the approach and overall costs of the query execution, complete with the index selections used.

· Another way to tune is to turn on a SQL trace and store the trace data to a file. Then let the performance profiler analyze the data and make index suggestions.

Using surrogate keys in MS Access

There are a few details worth mentioning to make data entry easy for the user, while hiding the surrogate keys.

Let us assume that there are two tables, Department and Employee with the following structures:

[image: image4.png]
Figure 4: Structure of Department table.

Note that figure 4 shows that the SK field is the primary key, and that there is a unique index on Code. Also notice that two fields are foreign keys to the Employee table, and are named descriptively

[image: image5.png]Figure 5: Department table

[image: image6.png] Figure 6: Structure of Employee table (not all fields shown)

Figure 6 shows that just like the Department table, the Employee table has a single primary key field, also named SK.

The table has unique indexes on EmployeeID and SocialSecurity fields to prevent duplicates.

The SK of the department is stored as in integer in the DepartmentSK field.

[image: image7.png]Figure 7: Employee table

Specifying the relationships

The Department table has a one to many relationship with the Employee table. That is, many employees can have the same DepartmentSK value.

Because there are another two relationships between the Department table and the EmployeeSKManager and EmployeeSKSupervisor fields, the relationship window looks something like figure 8. Note that the suffix after each additional employee table image is just for display, they are all pointing to the same physical Employee table.

[image: image8.png]
Figure 8: Relationship window.

Hiding the SK field during data entry

When entering data into a form, typically the user will never see the SK field, they’ll be presented with some mneumonic code, or something else that easily identifies the record to the user. In order to store the SK value, combo boxes are used to surface the data. (A similar technique can be applied to datasheet views by using the table design window to specify a combo box on the Lookup tab for a field that is a foreign key to another table).

[image: image9.png]
Figure 9: Properties for combo box for DepartmentSK

Figure 9 shows the properties applied to a combo box bound to the DepartmentSK field. There are several things worth noting:

· The control source is the DepartmentSK field. That is, this is where the data will be stored.

· The row source can be a SQL statement or a named query, in this case selecting three fields from the Department table.

· The column count determines how many of the fields returned by the query will be displayed. You can specify less columns, if you like, but if you specify more columns than there are fields, Access will display the extras as blank columns.

· Adding column heads uses the field names (or captions if a result of a saved, named query) at the top of the list.

· The column widths property is important here. Note that the first column (which is the SK value) is set to a width of 0. This effectively hides the column from the user, and forces Access to use the second column for displaying the data. This way the user gets to see and type in the codes instead of the SK values.

· Using column 1 (in this case the SK) as the bound column tells Access which column value to store in the ControlSource field. If your query specified a different field order, you would adjust toe column widths and bound column appropriately to hide and bind the correct data.

· List rows determines the maximum number of rows to display at one time.

· List width determines the width of the list displayed. Most designers should simply add up all the values in the column widths, and possibly adjust for the screen width.

· The if the limit to list property is set to true, the user cannot enter values that are not in the list. It will also raise an OnNotInList event whereby you can consider programmatically letting the user add a new department record and return to this form.

· The auto-expand feature saves user keystrokes. As the user types into the field, the position in the list will move to the first row in the list that matches their typing. So in this case, if the user typed a “P”, then the payroll record appears as current in the list.

Summary

We’ve seen how indexes are integral to the database schema, both from a theoretical level, and from a practical approach. Your database management program has additional documentation that can help you refine and optimize your indexes for improved performance.

Obviously, I’m rather partial to using surrogate keys, and you might also find them useful in your applications.

Index tuning can be a difficult and time consuming chore, but the results can be enhanced performance with strong data integrity. The tools you have at your disposal will help you optimize your schema.

_987834948

_987837719

_987842278

_987845836

_987841233

_987836731

_987828132

